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a b s t r a c t

Red meats, such as pork, beef, and lamb meats, play an important role in people’s daily diet as they can
provide good protein, vitamins, and minerals to promote human health. Either the meat processing
industry or consumers usually evaluate meat quality with some common quality characteristics, which
generally encompass microbiological attributes (freshness, spoilage), chemical attributes (fat, protein,
moisture), sensory attributes (color, tenderness, flavor) as well as technological attributes (pH, water-
holding capability). Manual inspection and chemical detection methods are tedious, time-consuming,
and destructive. Consequently, fast and nondestructive methods are required for detecting these attri-
butes in the modern meat industry. Hyperspectral imaging is one of the promising methods, which inte-
grates the merits of imaging and spectroscopy techniques. This paper provides a comprehensive review
on the recent development of hyperspectral imaging systems and their applications in detecting some
important quality attributes of pork (color, drip loss, pH, marbling, tenderness, chemical compositions),
beef (color, pH, tenderness, water-holding capacity, microbial spoilage), as well as lamb (color, drip loss,
pH, tenderness, chemical composition). Finally, the future potential of hyperspectral imaging is also
discussed.

� 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

Red meats are a significant part of people’s daily diet as they can
provide good protein, vitamins, and minerals to promote human
health (McAfee et al., 2010). Among a variety of red meats, pork,
beef and lamb are commonly served as people’s first-choice
sources of animal protein. With the improvement in living stan-
dards, people currently pay more attention to the quality of food
products. Therefore in the modern agri-food industry, quality is
one of the most important concerns and the industry is always
looking for new technologies such as novel cooling (Sun and Bros-
nan, 1999; Sun and Zheng, 2006; Sun and Hu, 2003; Wang and Sun,
2001), freezing (Delgado et al., 2009; Zheng and Sun, 2006), drying
(Sun, 1999; Sun and Byrne, 1998; Sun and Woods, 1993, 1994a,
1994b, 1997; Cui et al., 2004) and edible coating (Xu et al., 2001)
to enhance product qualities. For meat products, how to keep them
in high quality is critical as high quality products are the basis for
success in today’s highly competitive market. Therefore, the meat
industry should manufacture superior red meats to fulfill consum-
ers’ expectation so that they can dominate the market better. Meat
quality is usually defined as a measurement of attributes or
characters that determine the suitability of meat to be eaten as
fresh or stored for reasonable period without deterioration (ElM-
asry et al., 2012a). Furthermore, meat quality attributes could
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encompass chemical attributes, microbiological attributes, sensory
attributes and technological attributes (Mancini and Hunt, 2005;
Chen and Qin, 2008; Rosenvold and Andersen, 2003; Otto et al.,
2004; Andrés et al., 2008; Warner et al., 1997; Agullo et al.,
1990; Pathare et al., 2013), as illustrated in Fig. 1. These attributes
highly affect the quality of red meats because of the great variabil-
ity in these attributes, which results from a direct integration of
conditions such as pre-slaughter, stunning method, and electrical
stimulation. Particularly, this issue will be aggravated if the indus-
try is unable to characterize this level of quality satisfactorily. Tra-
ditionally, sensory attributes (color, flavor, firmness, marbling,
tenderness, etc.) of many foods (Chen and Qin, 2008; Rosenvold
and Andersen, 2003; Otto et al., 2004; Andrés et al., 2008; Hernán-
dez et al., 2008a, 2008b), including red meats, are inspected by
some well trained assessors. In some abattoirs, tenderness is eval-
uated using a ‘‘finger method’’, and for meat color and marbling,
the evaluation methods are similar and are usually carried out by
comparing the color of the rib eye muscle (Musculus longissimus
dorsi) or the proportion of intramuscular fat within the M. longiss-
imus dorsi and scored against the reference standards specific for
each of the meat species. However, manual inspection is subjec-
tive, tedious, time-consuming and inconsistent. In addition, some
important internal quality attributes such as acidity and nutri-
tional constituents cannot be detected by manual inspection.
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Besides the manual inspection, other methods like chemical meth-
ods and instrumental techniques have been used in detecting qual-
ity attributes for a long time, which are more convenient and
effective than manual inspection. For chemical methods, the
long-time standard for protein analysis is the Kjeldahl method
(Petracci and Baeza, 2011), and the method of choice for official
fat analyses is a solvent-based method for measuring the total fat
content in meat (Petracci and Baeza, 2011). In terms of instrumen-
tal methods, pH is traditionally measured by pH meter by inserting
it into the muscle directly after incision of the muscle, and colorim-
eters are commonly utilized for meat color evaluation. In addition,
common physical measurement of meat tenderness is based on a
Warner–Bratzler shear force (WBSF) or slice shear force (SSF).
However, most of the above-mentioned techniques are destructive,
tedious, time-consuming and require lengthy sample preparation.
Therefore, these methods are not suitable for fast analysis and
early detection of quality attributes in industrial and commercial
processing. Objective and automatic technologies for detecting
these quality attributes are thus being sought by the industry.

In recent years, there have been many research efforts in devel-
oping nondestructive techniques (Defraeye et al., 2013; Zhang
et al., 2013; Lu et al., 2012; Abdel-Nour et al., 2011; Sowoidnich
et al., 2010; Manickavasagan et al., 2010; Zaïdi et al., 2008) for
detecting internal and/or external quality attributes. Different
techniques based on different principles, procedures, and instru-
ments are currently available for measuring different meat quality
attributes. Table 1 shows the comparison of several important
non-destructive techniques. Ultrasound technology is one of these
non-destructive methods which can be used to determine the
physicochemical properties of many foods. Particularly, ultrasound
technology has been successfully used for composition measure-
ment in beef (Lambe et al., 2010), lamb (Sahin et al., 2008; Orman
et al., 2008) and pork (Gresham et al., 1992). Besides, computed
tomography (CT) scanning is another non-invasive method that
uses X-rays to create pictures of cross-sections of the body (Prieto
x

y

Spectral 
image

Pixel spe

Fig. 2. Schematic illustration of h
et al., 2010). However, CT is considered as an expensive tool, which
is mainly used in the field of medicine and the carcass evaluation
time is a bit higher than that of other online methods (Kongsro
et al., 2009; Font-i-Furnols et al., 2013). Moreover, imaging and
spectroscopic techniques, which can provide useful information,
are two valuable technologies in measuring meat quality attri-
butes. In the past 20 years, many studies have been reported on
predicting quality attributes of red meats using spectroscopic tech-
niques (Prevolnik et al., 2010; Rødbotten et al., 2000; Geesink et al.,
2003), especially in near-infrared (740–2500 nm) region. Com-
pared to classical chemical and physical analytical methods, spec-
troscopic techniques have two apparent advantages (Valous et al.,
2010). On one hand, they have a short measuring time with limited
sample preparation. On the other hand, they are chemical-free, and
can be applied to estimate more than one attribute at the same
time. Consequently, spectroscopic techniques have been inten-
sively applied in quality evaluation of pork, beef and lamb (Prevol-
nik et al., 2010; Rødbotten et al., 2000; Geesink et al., 2003).
Unfortunately, conventional spectroscopic techniques alone are
not able to provide compositional gradients because the measure-
ment focuses only on a relatively small part of the specimen being
analyzed to produce average values of composition. Imaging tech-
niques in the form of computer or machine vision mostly use
reflectance mode to detect external quality characteristics such
as color, size, shape and surface texture (Jackman et al., 2008,
2011; Du and Sun, 2005; Valous et al., 2009). Imaging techniques
can provide superior spatial information and thus have been ap-
plied for visual evaluation of red meats for rapidly identifying dif-
ferent quality parameters on the processing line with minimum
human intervention. Although external attributes can be easily
evaluated by imaging techniques, the techniques are unable to de-
tect compositional attributes such as moisture, fat and protein con-
tent due to very limited spectral information.

As a logic extension of both spectroscopy and digital imaging or
computer vision techniques, hyperspectral imaging has been
Spectral 
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Fig. 3. Components of a typical hyperspectral imaging system.
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widely accepted as a new inspiring technique for rapid, reagent-
less and nondestructive quantitative applications in the meat
industry (Barbin et al., 2012a; Kamruzzaman et al., 2011, 2012a).
Compared to conventional spectroscopic techniques, the hyper-
spectral imaging has advantages of receiving spatially distributed
spectral responses at each pixel of a meat image. Such information
forms a three-dimensional data cube called ‘‘hypercube’’, which
contains two-dimensional spatial information (x, y) as well as
one-dimensional spectral information ki (i = 0, 1, . . ., L � 1) (Wu
et al., 2012a). For a fixed kk, I(x, y, kk) represents the kth single-band
image (Feng and Sun, 2012). If x and y are fixed, then I(x, y, ki)
stands for the spectrum or spectral information. These data provide
a large amount of information that can be analyzed to ascertain
minor and/or subtle physical and chemical features in a sample.
Fig. 2 demonstrates a schematic representation of hyperspectral
imaging hypercube showing the relationship between spectral
and spatial dimensions. As the quantitative assessment of physical
and chemical attributes is quite important, the distribution of such
attributes is extremely significant to fully characterize red meats.
Hyperspectral imaging would be suitable for achieving this goal
because of its capability of acquiring hundreds of spectra with high
spectral and spatial resolution for providing both spectral and spa-
tial information of each pixel over certain wavelength range. In
fact, a significant amount of research has been done in the area
of hyperspectral imaging applied specially to red meats analysis,
highlighting its ability to predict different quality parameters
including water holding capacity, pH, color, tenderness and fat
content in beef, pork and lamb (ElMasry et al., 2013; Naganathan
et al., 2008; Kamruzzaman et al., 2012b, 2013; Barbin et al.,
2012b; Qiao et al., 2007a). In order to obtain a broad application,
developing hyperspectral imaging systems to assess quality attri-
butes of red meats and to ensure their authentication is important,
which would bring economic benefits to the industry. However,
there are still some challenges ahead due to high dimensionality
and time constraints for image acquisition and subsequent image
analyses. Therefore, seeking the most sensitive wavebands so that
multispectral imaging systems can be built will be the trend in re-
search and development of the technology.
2. Recent developments of hyperspectral imaging systems

Originally, hyperspectral imaging was developed for remote
sensing applications, which utilize satellite imaging data of the
earth, moon, and planets, but has since found its potential in other
fields like agriculture, pharmaceuticals and the food industry (ElM-
asry et al., 2012b). In short, hyperspectral imaging systems are
mainly made up of two parts: hardware and software. The role of
hardware is to obtain the images while software is to process the
images in order to extract useful image information for predicting
quality attributes of products. With the advancement of science
and technology, hardware of hyperspectral imaging systems has
become increasingly sophisticated. Meanwhile, software has more
powerful capacity for data analysis as well as image processing.
Therefore, recent progress of hardware and software development
of hyperspectral imaging systems was investigated.

2.1. Advances in hardware

With the fast development of technology, hardware updates at
a rather rapid speed and the cost of hardware decreases corre-
spondingly. Fig. 3 shows a typical hyperspectral imaging system,
which consists of five components: an illumination unit, a spectro-
graph, a high performance camera with charge coupled device
(CCD) or complementary metal oxide semiconductor (CMOS)
sensors, a translation stage operated by a stepper motor and a
computer equipped with image acquisition software (ElMasry
et al., 2012a).

The illumination unit generates light which illuminates the
sample. This part is important because it makes a significant im-
pact on the performance and reliability of the system. Tungsten-
halogen lamps, which add halogen elements (F, Cl, Br, I) into quartz
tubes, are widely used as illuminators in hyperspectral imaging
systems (Buschmann et al., 2005). Compare to normal light bulbs,
tungsten-halogen lamps have higher luminous efficiency. Further-
more, halogen frequency can guarantee sustained glow and long
lifetime, which is four times more than normal light bulbs. Mean-
while, the long lifetime makes their replacement cycle longer,
resulting in substantial cost savings. In addition, other kinds of
durable lamps such as HgAr lamps or LED source have been applied
as well (Park et al., 2006).

The spectrograph is the most important part of the hyperspec-
tral imaging systems, which helps in generating a spectrum for
each point on the scanned line. With the development of sensor
technology, many different types of sensors have been developed,
which can acquire images in different spatial resolution, temporal
resolution and spectral resolution. Imaging spectrographs are
gradually developed under this background. According to the char-
acteristics of imaging spectrographs, hyperspectral imagers can be
divided into three types: whiskbroom, pushbroom, and tunable fil-
ter. Among them, whiskbroom and pushbroom are both spectral
scanning methods. The biggest difference between them is that
whiskbroom scans the sample in the spatial domain by moving
the sample point-by-point while pushbroom is moving the sample
line by line. Pushbroom is the most widely used in detecting qual-
ity attributes of red meats. On the other hand, tunable filter obtains
images one wavelength after another, thus it is also called wave-
length scanning. This method is different from the other two ways,
as it keeps the meat sample fixed.

The camera is a two-dimensional detector with high perfor-
mance sensors, which can collect the spectral and spatial informa-
tion simultaneously. CCD or CMOS are two widely used image
sensors that have been developed rapidly in recent years (Litwiller,
2001). CCD is a kind of subminiature image sensor, which uses
electric charges as signal carrier. Its working principles are based
on light absorption of silicon and photoelectron collection. Now,
CCD is one of the most important image sensors because of its high
pixel count, high sensitivity, wide spectrum response, high integra-
tion, easy maintenance, low cost, and commercial availability. Cur-
rently, there have been several recent advances in the application
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of CCD. On one hand, some improvements have been done on the
basis of original structures. For example, frame-transfer CCD (FT-
CCD) has been developed to reduce production cost and to improve
the device performance (Fife et al., 2007). Furthermore, some
researchers developed a low-power imaging system by combining
CCD technology with CMOS technology (Suntharalingam et al.,
2000). In addition, readout noise of CCD has been reduced by
enlarging the gain of amplifiers as well as the gate capacitance.
On the other hand, a few novel concepts and methods have been
presented to improve the performance of CCD. For example, a
new CCD with the capacity of charge storage and slash transfer
has been proposed in order to promote the response rate (Aiqun
et al., 2007). In terms of CMOS, it is integrated in the semiconduc-
tor materials, which are known as metal oxide. The principle of
CMOS is to utilize light-sensitive diode for achieving photoelectric
conversion (Bigas et al., 2006). Currently, CMOS image sensors are
becoming competitive with regard to CCD technology as they own
some specific advantages, such as lower power consumption, low-
er voltage operation, on-chip functionality and lower cost. CCD
technology will continue to dominate the high-performance
branch, but the performance of CMOS image sensors will continue
to improve until the line between CCD and CMOS image quality is
blurred. The spectrograph, camera and illumination conditions
determined the spectral range of the system. The progress of opti-
cal grating technology has resulted in more precise spectral ranges
in practical applications (Feng and Sun, 2012).

Finally, the translation stage is used to move the sample past
the objective lens so that the entire surface of the sample can be
scanned and the computer plays a role in controlling the motor
speed, exposure time, binning mode, wavelength range and image
acquisition. The enhancement of computers’ memory, hard disk
capacity as well as the processor makes data storage and data pro-
cessing become much easier.

In future, hyperspectral hardware, in particular for optical de-
vices, will be more intelligent due to the increasing development
of computer techniques, which makes operational control auto-
matic and intelligent. According to the requirements of energy con-
servation and environmental protection, hardware will move
towards lower power consumption and more reliability. In addi-
tion, with the rapid development of various disciplines and appli-
cations of new materials, more powerful optical elements such as
fiber optic sensors will emerge. Fiber optic sensors have attracted
the attention of researchers due to their unique properties: small
size, light weight, low cost, and strong anti-interference capability
(Martellucci et al., 2002). Therefore, fiber optic sensors can simplify
devices. Nowadays, many kinds of fiber optic sensors have been
developed such as Bragg grating optical sensors, fiber optic
Febry–Perot temperature sensors and intensity modulated sensors
(Ciziri and Dogan, 2013), and have been widely used for structural
sensing and monitoring in civil engineering, aerospace, and medi-
cine (Méndez and Csipkes, 2013).

2.2. Advances in software

Software includes the skills, knowledge and capacity that need
to be built up in order to make the transfer of the technology suc-
cessful. Development of hyperspectral data processing technolo-
gies are relatively lagging behind that of hardware. However, due
to the great advantages of hyperspectral data, research efforts are
intensified to solve some specific problems, such as dimensionality
reduction and algorithm exploitation. Furthermore, some high
practical software for hyperspectral image processing has been
widely applied, including ENVI, MATLAB and others (Mehl et al.,
2004; Lu, 2003). ENVI contains the main functions for hyperspec-
tral image analysis, including calibration, filtering, and spectral
data extraction in regions of interest (ROI) (Shippert, 2003).
MATLAB is powerful in the aspects of algorithm exploitation, data
visualization, data analysis, and numeric computation. New ver-
sions of MATLAB have added many new powerful toolboxes, such
as Parallel Computing Tool, which greatly improve data processing
capacity and efficiency (Choy and Edelman, 2005).

Advances in software mainly focus on developing new algo-
rithms for hyperspectral data processing. On one hand, some
new methods for dimensionality reduction are developed. There
exists high correlation and redundancy among spectral bands of
hyperspectral images. Selecting desired bands to achieve dimen-
sionality reduction would not have much impact on the results,
but have great practical significance for removing redundant infor-
mation since it can not only save time but also accelerate data pro-
cessing. To make full use of hyperspectral images, developing
applicable band selection methods is the future direction. Gener-
ally, principal component analysis (PCA) and factor analysis (FA)
are two widely used linear approaches for feature extraction
(Lavanya and Sanjeevi, 2013). Nowadays, some improved band
selection algorithms have been proposed, including successive pro-
jection algorithm (SPA), principal factor analysis (PFA) as well as
independent component analysis (ICA) (Fodor, 2002). In particular,
SPA, a forward selection method that uses simple operations in a
vector space to minimize variable collinearity, is proposed as a no-
vel variable selection strategy for multivariate calibration (Zhang
et al., 2008). In addition, some non-linear selection algorithms such
as stimulated annealing (SA), genetic algorithm (GA) and particle
swarm optimization are proposed (ElMasry et al., 2012b, 2012c;
Feng and Sun, 2012; Liu et al., 2014) to make up the shortage of lin-
ear methods. For example, GA, which mimics the natural evolution
and genetic mechanisms, is a suitable method for selecting opti-
mum wavelengths and can produce more interpretable results
after suitable modifications. This method was originally proposed
by Holland (Jones and Rawlins, 1993), and its basic principle is to
use a series of operations mainly including selection, exchange,
and mutation to keep the optimum variables retained and weed
out the poor ones during the process of continuous genetic itera-
tion. On the other hand, some new spectral preprocessing methods
such as wavelet transformation (WT), mean sample residual spec-
trum correction (MSRSC), convolution transform (CT) and orthogo-
nal signal correction (OSC) are developed to reduce or eradicate
undesired effects such as light scattering and random noise result-
ing from variable physical sample properties or instrumental
effects (Bruce et al., 2002). These methods are promising, in partic-
ular for WT, which performs well in data compression. Classical
spectral preprocessing methods mainly includes first and second
derivatives, baseline offset correction, de-trending, multiplicative
scatter correction (MSC) and standard normal variate (SNV) trans-
formation (Jorgensen, 2000). However, the capability of baseline
offset correction is weak due to simple baseline shift. Derivative
methods can remove overlapping peaks and correct the baseline,
but they are prone to magnify the noise and increase the complex-
ity of the spectrum. MSC is mainly used to eliminate the light scat-
ter influence, which results from the heterogeneity of samples. The
principle of MSC is to make the scatter level of all spectra closed to
the level of the average spectrum. This procedure is actually to
establish a linear relationship between all spectra of a group of
samples and the average spectrum, but in some cases, light scatter
influence resulting from the heterogeneity of samples is non-linear
and MSC does not perform well for eliminating non-linear scatter
effect. To a certain extent, new spectral preprocessing methods
are able to solve these problems. In specific applications, different
preprocessing methods should be selected according to different
analysis purposes in order to obtain the best results. If the results
are unsatisfactory with only one preprocessing method, it is a
feasible plan to combine several different preprocessing methods
(Rinnan et al., 2009). With the advancement of hyperspectral



Table 2
Applications of hyperspectral imaging technology in predicting quality attributes of red meats.

Products Quality attributes Mode Spectral range (nm) Data analysis Accuracy Reference

Pork Protein content R 900–1700 PLSR 0.92 Barbin et al. (2012b)
Moisture content R 900–1700 PLSR 0.87 Barbin et al. (2012b)
Fat content R 900–1700 PLSR 0.95 Barbin et al. (2012b)
TVC R 400–1100 MLR, PLSR 0.886, 0.863 Wang and Zhang (2010a)
TVC R 400–1100 LS-SVM 0.9236 Wang et al. (2011)
TVC R 400–1100 LS-SVM 0.942 Wang and Zhang (2010b)
TVC R 400–1100 PLSR 0.945, 0.918, 0.919, 0.935 Peng et al. (2010)
Escherichia coli S 400–1100 MLR 0.877, 0.841 Tao et al. (2012)
TVB-N S 400–1100 PLSR 0.90 Li et al. (2011a)
Tenderness S 400–1100 MLR 0.831, 0.860, 0.856, 0.930 Tao et al. (2012)
Color R 900–1700 PLSR 0.93 Barbin et al. (2012c)
Color R 400–1000 FNN 0.86 Qiao et al. (2007a)
pH R 900–1700 PLSR 0.87 Barbin et al. (2012c)
pH R 400–1000 FNN 0.55 Qiao et al. (2007a)
pH R 400–1100 FNN 0.67 Qiao et al. (2005)
Drip loss R 900–1700 PLSR 0.83 Barbin et al. (2012c)
Drip loss R 400–1000 FNN 0.77 Qiao et al. (2007a)
Drip loss R 400–1100 FNN 0.80 Qiao et al. (2005)
Marbling level R 430–1000 FNN 0.75–0.85 Qiao et al. (2007b)

Beef Protein content R 900–1700 PLSR 0.86 ElMasry et al. (2013)
Moisture content R 900–1700 PLSR 0.89 ElMasry et al. (2013)
Fat content R 900–1700 PLSR 0.84 ElMasry et al. (2013)
Fat content R 1000–2300 PLSR 0.90 Kobayashi et al. (2010)
Fatty acid R 1000–2300 PLSR 0.87, 0.89 Kobayashi et al. (2010)
TVC S 400–1100 MLR 0.96 Peng et al. (2009)
Tenderness R 400–1000 CDA 0.96 Naganathan et al. (2008)
Tenderness S 400–1100 MLR 0.91 Wu et al. (2012b)
Tenderness R 900–1700 CDA 0.77 Li et al. (2011b)
Tenderness S 496–1036 0.67 Cluff et al. (2008)
Tenderness S 400–1100 MLR 0.86 Wu et al. (2010)
Tenderness R 900–1700 PLSR 0.83 ElMasry et al. (2012c)
Color S 400–1100 MLR 0.92, 0.90, 0.88 Wu et al. (2010)
Color R 900–1700 PLSR 0.88, 0.81 ElMasry et al. (2012c)
Color S 400–1100 MLR 0.96, 0.96, 0.97 Wu et al. (2012b)
pH S 400–1100 MLR 0.86 Wu et al. (2010)
pH R 900–1700 PLSR 0.73 ElMasry et al. (2012c)
WHC R 890–1750 PLSR 0.87 ElMasry et al. (2011)
Marbling level S 400–1100 MLR 0.92 Li et al. (2011b)

Lamb Protein content R 900–1700 PLSR 0.86 Kamruzzaman et al. (2012b)
Moisture content R 900–1700 PLSR 0.89 Kamruzzaman et al. (2012b)
Fat content R 900–1700 PLSR 0.84 Kamruzzaman et al. (2012b)
Color R 900–1700 PLSR 0.91 Kamruzzaman et al. (2012c)
pH R 900–1700 PLSR 0.65 Kamruzzaman et al. (2012c)
Drip loss R 900–1700 PLSR 0.77 Kamruzzaman et al. (2012c)
Tenderness R 900–1700 PLSR 0.84 Kamruzzaman et al. (2013)

TVC: total viable count, WHC: water holding capability, TVB-N: total volatile basic-nitrogen; R: reflectance, S: scattering; PLSR: partial least square regression, MLR: multiple
linear regression, LS-SVM: least squares support vector machine, FNN: fuzzy neural network, CDA: canonical discriminant analysis.
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imaging, more and more spectral preprocessing methods will be
developed. In the meantime, the availability of better preprocess-
ing methods appears to accelerate the further development of
hyperspectral imaging. Although research on spectral preprocess-
ing has been intensified, derivative processing, MSC and SNV are
still commonly used because these algorithms have already been
available in commercial software such as Unscrambler while new
algorithms have not yet been applied. Therefore, the future trend
in exploiting and utilizing novel preprocessing methods is to devel-
op the latest algorithms into simple and practical software so that
researchers can use them easily. In addition, methods for establish-
ing more robust models make progress as well. In general, multi-
variate chemometrics used to establish calibration or prediction
models, can be divided into quantitative analysis with multivariate
regression and qualitative analysis with multivariate classification
(Lorente et al., 2012). Currently, the most widely used multivariate
regression methods in quantitative analysis includes PCR (principal
component regression), PLSR (partial least square regression), and
MLR (multiple linear regression). Based on these linear methods,
some modified algorithms such as interval-PLS (iPLS) (Norgaard
et al., 2000), which can identify a spectral interval that is especially
informative with respect to the parameter under consideration,
have been developed to simplify the model and promote its predic-
tive accuracy (Magwaza et al., 2012). Although these linear ap-
proaches are promising, unsatisfactory results may be produced
when non-linearity is present. Consequently, non-linear methods
such as ANN (artificial neural networks), SAM (spectral angle map-
per) and SVM (support vector machine) regression have been
developed for modeling non-linearity. ANNs are commonly used
for modeling non-linearity with some advantages of flexible learn-
ing algorithm, diverse network topology, fast learning algorithm
and high error tolerance. SVM is another non-linear method that
makes input X mapped onto an m-dimensional feature space using
some fixed (nonlinear) mapping, and then constructs a linear mod-
el in this feature space (Cortes and Vapnik, 1995). Furthermore,
optimized versions based on the standard SVM such as least
squares support vector machine (LS-SVM) are also developed (Suy-
kens and Vandewalle, 1999). In addition, recent studies showed
that combining one multivariate method with another is practical
in order to improve prediction accuracy. For example, some



Fig. 4. A flowchart showing the routine of hyperspectral imaging processing.
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researchers have explored PLS or PCA in conjunction with back
propagation neural network (BPNN) (PCA-BNN) to develop models
for predicting quality attributes of fruit, which gave satisfactory
prediction results (Liu et al., 2010). Therefore, combination with
multiple multivariate methods for modeling will be another feasi-
ble way for predicting quality attributes of red meats in future.
3. Recent advances in detecting quality attributes of red meats
using hyperspectral imaging

In recent years, the hyperspectral imaging technique has been
extensively implemented for meat quality evaluation and detec-
tion, especially for red meats, which mainly include pork, beef
and lamb meats. Table 2 summarizes recent applications of hyper-
spectral imaging techniques in detecting quality attributes of red
meats. Currently, applications of hyperspectral imaging in detect-
ing quality attributes of red meats mainly contain prediction of
microbiological spoilage, chemical components (protein, fat,
moisture, etc.), color, tenderness, marbling level, drip loss, pH,
and WHC. To a certain extent, the procedures of quality attributes
prediction using hyperspectral imaging systems are somehow sim-
ilar. Fig. 4 shows a common flowchart of detecting quality attri-
butes of red meats using hyperspectral imaging systems. In the
following sections, a detailed analysis of these applications will
be given.
3.1. Measurements of chemical attributes

It is known that red meats are mainly composed of water, pro-
tein, fat, inosinic acid, amino acids, fatty acids and so on. Chemical
constituents of red meats are intrinsic reasons that affect red meat
quality. Through a series of reactions among different chemical
constituents, flavor, color, as well as tenderness of red meats
may change and thus result in bad appearance, which not only
influence consumers’ buying decision but also lead to economic
loss for the meat industry. For example, moisture, which generally
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refers to the total water content of meat, is the major chemical
constituent in red meats. The moisture content of red meats not
only affects their quality but also their shelf-life, and any depletion
of water will influence the economic profits of red meats as they
are usually sold by weight. Moreover, the moisture content of
red meats determines their juiciness, and variation of moisture
content will surely affect the eating quality of red meats. Besides
moisture, protein is also a main component in red meats. Red
meats contain many different kinds of proteins, which are easily
digested and absorbed by human body for essential good health.
Furthermore, the protein in red meats often has a high biological
quality and plays an important role in determining the quality of
red meats by affecting their flavor and color (Goll, 1992; Young
and West, 2001). In addition, fat and fatty acids are another two
major components of red meats, which contribute to the flavor
when they are cooked. Particularly, intramuscular fat, which is
present with the lean protein fibres in the muscle, has a positive
influence on eating satisfaction because little intramuscular fat
possibly results in cooked products that lack flavor and juiciness
(Fernandez et al., 1999). As most of the existing methods for
detecting the major components of red meats are destructive,
time-consuming and require long preparation times, it is emergent
for the meat industry to seek out rapid and automatic methods to
achieve nondestructive detection of these chemical constituents.

In the past few years, hyperspectral imaging systems as a smart
and nondestructive method have been used for predicting the con-
tent of water, fat and protein in pork, beef, and lamb (ElMasry et al.,
2013; Kamruzzaman et al., 2012b; Barbin et al., 2012b; Kobayashi
et al., 2010), and these studies have shown encouraging results. For
instance, Barbin et al. (2012b) developed a pushbroom hyperspec-
tral imaging system in the near infrared range of 900–1700 nm for
non-destructive determination of the protein, moisture and fat
content in intact and minced pork. PLSR prediction models, estab-
lished with a few selected feature-related wavelengths (eleven for
protein, seven for moisture, and nine for fat), showed satisfactory
results with R2 of 0.92, 0.87, 0.95 of protein, moisture, and fat
respectively.

In addition to pork, Kobayashi et al. (2010) used a laboratory
hyperspectral imaging system in the near infrared range between
1000 and 2300 nm for assessing the fat and fatty acid content in in-
tact raw beef cuts. By extracting the mean spectrum from the
hyperspectral image, they developed PLSR models for prediction
of fat and fatty acid content. Results showed that the extracted
spectral characteristics of hyperspectral images could successfully
predict total fat, total saturated fatty acid and total unsaturated
fatty acid with a high correlation coefficient (R2) of 0.90, 0.87 and
0.89 and standard error of prediction (SEP) of 4.81%, 1.69% and
3.41%, respectively. Another study about chemical constituent pre-
diction of beef was tested by ElMasry et al. (2013). The established
PLSR models also showed a reasonable accuracy for predicting
water, fat and protein contents with R2 of 0.89, 0.84 and 0.86,
respectively.

Lamb meats are another important kind of red meats, but few
studies about predicting quality attributes of lamb meats using
hyperspectral imaging have been reported. Kamruzzaman et al.
(2012b) were the first in using the hyperspectral imaging system
(900–1700 nm) for prediction of the protein, fat, and moisture con-
tent in lamb meat. In their study, a total of 126 hyperspectral
images of three different muscle samples (Musculus semimembra-
nosis, Musculus semitendinosus and M. longissimus dorsi) were ac-
quired. After a series of data processing, six wavelengths (960,
1057, 1131, 1211, 1308, and 1394 nm) were selected as the most
relevant wavelengths in the spectrum for fat and water prediction,
while another six wavelengths (1008, 1211, 1315, 1445, 1562 and
1649 nm) were selected for protein prediction. The PLSR models
based on the selected wavelengths were established and showed
good prediction abilities for these chemical constituents with
determination coefficient R2 of 0.84, 0.87 and 0.82 and SEP of
0.57%, 0.35% and 0.47% for water, fat and protein contents,
respectively. As this was the first reported study in nondestructive
detection of lamb meat using hyperspectral imaging, it should
encourage future research for detecting other quality attributes
of lamb meats. The above studies indicated that hyperspectral
imaging has considerable potential for predicting chemical compo-
sitions of red meats.

3.2. Measurements of microbiological attributes

Spoilage in red meats is caused by the growth and enzymatic
activity of microorganisms, which could result in the decomposi-
tion of nutrition matter and the formation of metabolites. Red
meats with excessive bacteria cause harm to human health, thus
it is critical to guarantee the safety of red meats supplied to the
markets. However, the present traditional methods for bacterial
spoilage detection, such as plate count method, enumeration
methods based on microscopy, ATP bioluminescene, and the mea-
surement of electrical phenomena, cannot achieve rapid, accurate
and non-destructive detection of bacterially contaminated meat.
Hyperspectral imaging can satisfy all these requirements, and its
potential for predicting microbiological attributes of red meats
has been intensively studied throughout many research endeavors
(Wang and Zhang, 2010a; Tao et al., 2012; Peng et al., 2009; Peng
and Wang, 2008). Among these studies, the majority of them used
linear regression methods for modeling. For example, Wang and
Zhang (2010a) used hyperspectral reflectance imaging for assess-
ing the total plate count on chilled pork surface, and two prediction
models were established using MLR and PLSR, giving encouraging
results with R = 0.886 and 0.863 respectively. In addition to hyper-
spectral reflectance imaging mentioned above, which is commonly
used, hyperspectral scattering technique could be also a potential
method in detecting microbiological spoilage, because the changes
in scattering profiles are able to represent the changes in microbi-
ological spoilage. For instance, a hyperspectral scattering
technique has been applied in detecting Escherichia coli contamina-
tion of pork (Tao et al., 2012). In this study (Tao et al., 2012), the
scattering profiles were fitted by Lorentzian distribution to give
three parameters a (asymptotic value), b (peak value) and c (full
width at b/2). The results showed that MLR models based on
parameters a and ‘‘a&b&c’’ gave high R of 0.877 and 0.841, respec-
tively. Furthermore, hyperspectral scattering technique has also
been used to detect TVC of beef (Peng et al., 2009), in which a
MLR prediction model was developed based on relating individual
Lorentzian parameters and their combinations at different wave-
lengths to log10 (TVC) value. The best prediction were acquired
with R2 = 0.96 and SEP = 0.23 for log10 (TVC). Although PLSR or
MLR is promising, neither is able to solve nonlinear regression
problems, thus some researchers used nonlinear modeling meth-
ods instead such as ANN, SAM, and SVM (Peng and Wang, 2008;
Wang et al., 2011). For example, Peng and Wang (2008) have suc-
cessfully developed a hyperspectral imaging system based on SVM
for detecting TVC of bacteria in pork meat with R = 0.87, and the re-
sults were better than that of MLR methods. In order to improve
the accuracy of prediction models, Wang et al. (2011) attempted
to use the hyperspectral imaging system coupled with the least
square support vector machines (LS-SVMs) for predicting the TVC
of pork. Eight optimal wavelengths (477, 509, 540, 552, 560, 609,
720 and 772 nm) were selected to construct the TVC prediction
in conjunction with the corresponding reflective spectrum data
at these wavelength. The ultimate model with R2 = 0.9236,
RMSEV = 0.3279, indicated that the hyperspectral imaging system
in conjunction with LS-SVMs could be more efficient to predict
the TVC of pork.
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3.3. Measurements of sensory attributes

Currently, detecting sensory attributes of red meats using
hyperspectral imaging systems are mostly focused on prediction
of color, marbling and tenderness. Sensory attributes are the main
quality attributes that influence consumers’ overall evaluation of
red meats. On one hand, color and marbling highly affect consum-
ers’ buying decisions as consumers usually use the two attributes
as indicators of freshness and wholesomeness. On the other hand,
tenderness of red meats is an eating quality attribute, which can-
not be evaluated directly by consumers. Therefore, prediction of
these sensory attributes from fresh red meats is a major concern
for the meat industry.

3.3.1. Color
Color is an important quality attribute, which can determine the

grade or suitability of red meats coupled with other attributes. Beef
meat and lamb meat in bright red and pork in pink are desirable,
which will be attractive to consumers. Undesired surface color
can make retailers cut their prices, resulting in revenue losses.
Most commonly, color is measured by colorimeters in L�a�b� color
space, where L� represents the brightness, a� the red–green color
and b� the blue–yellow color axis. However, the colorimeter cannot
measure the color of the whole surface if samples are non-homo-
geneous, and with the measured area enlarging, unreliable results
may come out because of intramuscular fat and connective
content. With the rapid development of hyperspectral imaging sys-
tems, some authors try to explore their potential in color evalua-
tion (Qiao et al., 2007a; Barbin et al., 2012c; ElMasry et al.,
2012c; Wu et al., 2012b). Qiao et al. (2007a) developed a hyper-
spectral imaging system for prediction of color value L� by extract-
ing spatial and spectral information simultaneously. Based on
simple correlation analysis, six wavelengths (434, 494, 561, 637,
669 and 703 nm) were selected as the optimum wavelengths.
Then, two FNN-based prediction models were established using
two intensity indices (R and R0) of the band images as inputs
respectively. The results showed that model 2 (R’ as input) per-
formed better than model 1 (R as inputs), with higher R2 of 0.86.
Besides predicting the value of L� only, Wu et al. (2012b) applied
hyperspectral scattering techniques to predict all three color
parameters (L�, a�, b�) in fresh beef meat. In this study, the scatter-
ing profiles were firstly derived from hyperspectral images and
then fitted to the Lorentzian distribution (LD) function for extract-
ing necessary parameters for L�, a�, and b� values prediction. Final-
ly, a MLR model was established using the LD parameters in
conjunction with optimal wavelengths, and the results demon-
strated that hyperspectral scattering technique was also a power-
ful approach to predict color parameters (L�, a� and b�) in beef,
with R of 0.96, 0.96 and 0.97, respectively.

3.3.2. Marbling
Marbling, which is also called intramuscular fat, refers to the

white flecks of fat present within the lean muscle in the meat.
Red meats with uniformly and finely distributed marbling are al-
ways considered as superior products, and consumers pay higher
prices for them. Some previous studies have demonstrated that a
close relationship between marbling level and palatability of red
meats exist (Brooks et al., 2000; Kim and Lee, 2003), as marbling
level can highly influence meat tenderness and juiciness (Fortin
et al., 2005). In addition, intramuscular fat can give meat a distinc-
tive aroma when it is cooked (Fernandez et al., 1999). Therefore,
marbling is an important quality attributes of red meats, but most
meat processers evaluate the marbling level by comparing the
intramuscular fat within the M. longissimus dorsi against marbling
reference standards of each meat species. Although this method is
carried out by graders with good experience, it is still a subjective
judgment and the consistency among these graders cannot be
guaranteed. Therefore, there is a need for an objective method
for marbling assessment for the meat industry. In recent years,
some researchers have applied hyperspectral imaging systems in
marbling evaluation and with good results obtained (Qiao et al.,
2007b; Li et al., 2011a). For example, Qiao et al. (2007b) developed
a hyperspectral imaging system for predicting the marbling level of
pork meat. In their study, spatial features of pork samples were ex-
tracted for marbling assessment. In addition, marbling reference
standards were scanned, and indices of the marbling scores (from
1.0 to 10.0) were determined by co-occurrence matrix. Finally,
angular second moment (ASM) was applied to predict marbling
scores, which gave a successful result except for the standard score
10.0. A total of 40 pork samples were detected and their marbling
scores mostly ranged from 3.0 to 5.0. Besides pork meat, marbling
level of beef meat has also been assessed using a hyperspectral
scanning imaging system in the spectral region of 400–1100 nm
(Li et al., 2011a). In this study (Li et al., 2011a), some characteristic
bands were selected according to the maximal ratio of gray value
of fat and lean in each band. Consequently, the images at 530 nm
were utilized to differentiate marbling level of beef samples. With
three extracted characteristic parameters, a MLR prediction model
was finally established, which gave an encouraging result with
R2 = 0.92 and SECV = 0.45.

3.3.3. Tenderness
Tenderness, an expression of meat texture, is regarded as one of

the most important sensory quality attributes as it highly influ-
ences consumer satisfaction (Rødbotten et al., 2000). As mentioned
above, the most common method to evaluate tenderness of red
meats is to use a WBSF or SSF, but both of them are not suitable
for rapid prediction and on-line applications. Recently, interests
in exploiting instruments that can achieve fast and non-destructive
assessment of meat tenderness are growing. In this aspect, hyper-
spectral imaging systems have great potential, which has been
demonstrated by many studies (Naganathan et al., 2008; Kamruzz-
aman et al., 2013; Tao et al., 2012; Cluff et al., 2008; ElMasry et al.,
2012c). For example, Naganathan et al. (2008) used a visible/near-
infrared hyperspectral imaging system to assess tenderness of
14-day aged beef. Hyperspectral images of beef samples were ac-
quired at 14-day post-mortem. Then, spatial and spectral features
of the hyperspectral images were extracted using PCA and a
co-occurrence matrix. On the basis of the extracted features, a
discriminant model was established. Furthermore, with a leave-
one-out cross-validation procedure, the model predicted three
tenderness categories (tender, intermediate, and tough) with an
accuracy of 96.4%. Besides, some authors used hyperspectral scat-
tering techniques to predict tenderness of red meats, because the
changes in scattering profiles can represent the changes in tender-
ness. For instance, Tao et al. (2012) applied the hyperspectral scat-
tering technique to predict tenderness of pork meat, and the final
prediction model established with MLR methods gave high R2,
ranging from 0.831 to 0.930. In addition, Cluff et al. (2008)
developed a hyperspectral scattering imaging system to predict
tenderness of beef meat. In their study (Cluff et al., 2008), a total
of sixty-one steaks were scanned. Then, the optical scattering
profiles were derived from the hyperspectral images, and these
profiles were used to extract useful parameters for predicting the
WBSF values. The result demonstrated that hyperspectral scatter-
ing imaging technique was able to predict WBSF values with R of
0.67. On the other hand, there was only one study about tender-
ness prediction of lamb meat using a hyperspectral imaging system
(Kamruzzaman et al., 2013), in which SPA as a new method for
wavelength selection was used to select the most representative
wavelengths (934, 964, 1017, 1081, 1144, 1215, 1265, 1341,
1455, 1615 and 1655 nm) for predicting WBSF values. The ultimate
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models established with PLSR methods gave good results in predic-
tion (R2 = 0.84) and categorization (89%) of lamb meat based on
WBSF values.

3.4. Measurements of technological attributes

3.4.1. pH
pH is a chemical concept, which refers to the concentration of

the hydrogen ion in aqueous solution, and has great influence on
the storage and quality of red meats by affecting their water hold-
ing capacity and color. pH values of normal muscles are between
7.1 and 7.3, which changes a lot in postmortem. After slaughter,
metabolism in muscle is still going on in order to keep the internal
environment stable. During this process, the substrates glycogen,
glucose, and glucose-6-phosphate are converted to lactate through
anaerobic glycolysis. The accumulation of lactate coupled with
protons released from adenosine triphoshpate hydrolysis leads to
a pH decline in muscles (El Rammouz et al., 2004). The rate and ex-
tent of pH decline have a great impact on the shelf life of red meats
and their eating quality. In detail, two main adverse cases related
to pH in meat quality can be concluded: one is pale, soft and exu-
dative (PSE) meat and the other one is dark, firm and dry (DFD)
meat (Barbut et al., 2008; Honikel and Fischer, 1977). PSE meat re-
sults from a rapid pH decline in postmortem, and DFD meat is due
to a high ultimate pH (Honikel and Fischer, 1977). Red meats in
both cases are usually considered as inferior products as these
meats not only have a bad taste but also less acceptable in color,
and may have a shorter shelf-life. Traditionally, pH is measured
by inserting a pH meter into the muscle directly after incision of
the muscle, but nowadays, there is a potential to predict pH using
hyperspectral imaging systems (Barbin et al., 2012c; Qiao et al.,
2005; Wu et al., 2010; Kamruzzaman et al., 2012c). For example,
Qiao et al. (2005) developed a hyperspectral imaging system,
which could extract both spectral and spatial characteristics of
hyperspectral images, for determination of pH in pork meat. In
their study (Qiao et al., 2005), six wavelengths (430, 448, 470,
890, 980 and 999 nm) were selected as feature wavelengths for
predicting pH values. With these feature wavelengths, a feed-for-
ward neural network model was finally established, which gave
R2 of 0.67. Another example to predict pH of pork meat using
hyperspectral imaging was carried out by Barbin et al. (2012c), in
which, several spectral preprocessing methods including SNV and
MSC were first used to eliminate the influence of spectral varia-
tions. After extracting useful spectral information, a prediction
model was then built up with a PLSR method. The ultimate results
showed that pH could be well predicted using hyperspectral imag-
ing systems with R2 of 0.87. In addition, Wu et al. (2010) exploited
the potential of hyperspectral scattering systems for pH prediction
of beef meat, with the final MLR model showing good performance
for pH prediction with RCV = 0.86, SECV = 0.07. On the other hand,
Kamruzzaman et al. (2012c) developed a NIR hyperspectral imag-
ing system in conjunction with multivariate analysis for pH predic-
tion of lamb meat. In this study (Kamruzzaman et al., 2012c), a
prediction model was established with a PLSR method, and gave
results with an R2

CV of 0.65, RMSEC of 0.075, and RMSECV of
0.085. Besides RMSEC and RMSECV, the ability of the prediction
model was also evaluated based on the RPD (ratio of prediction
to deviation), which was defined as the ratio of standard deviation
(SD) of the reference values over the RMSECV (RPD = SD/RMSECV).
Generally, an RPD value greater than 2 indicates reasonable good
prediction, and above 3 means excellent prediction accuracy and
is considered adequate for analytical purposes (Nicolai et al.,
2007). In this study, the RPD value was 1.76, meaning that the
model was not so robust. Therefore, more research efforts should
be intensified to improve the prediction accuracy of pH using
hyperspectral imaging in future.
3.4.2. WHC
Red meats contain approximately 75% water (De Smet, 2012),

and in the process of slaughter, storage and processing, it is easy
to lose moisture in muscles. It is reported that moisture loss of
fresh meat is generally between 1% and 3%, while for PSE meat
the loss can even reach 10% (Huff-Lonergan, 2002). The ability of
red meats to retain all or part of their own water is known as
WHC, which is a major quality attribute as it determines the juic-
iness of red meats (Wierbicki and Deatherage, 1958). For the meat
processing industry, predicting the WHC of red meats is essential
because WHC is an indication for weight loss in raw, cooked, as
well as processed meats. In the last decades, many studies have
been carried out to investigate pre- and post-mortem factors influ-
encing WHC of red meats. As we know from these studies, these
factors can be generally sorted into intrinsic (genotype) and extrin-
sic (fasting, stunning, pre-rigor temperature, etc.) factors. There are
a variety of techniques for the determination of WHC such as drip
loss, cooking loss, filter paper wetness, and processing loss (Petrac-
ci et al., 2011). However, most of these traditional methods are
time consuming and destructive and cannot be applied in real-time
applications. Therefore, new non-contact and nondestructive
methods have been introduced to solve these difficulties, and
among them, hyperspectral imaging is particularly promising. For
instance, ElMasry et al. (2011) developed a near-infrared hyper-
spectral imaging system for nondestructive prediction of WHC in
fresh beef. PCA were used to extract feature wavelengths, leading
to the selection of six important wavelengths (940, 997, 1144,
1214, 1342, and 1443 nm) for establishing a prediction model with
the PLSR method. The model gave a reasonable accuracy to predict
drip loss with R2 of 0.87 and SECV of 0.28%.
4. Future prospects

Hyperspectral imaging is a powerful technique for predicting
essential attributes of red meats such as pH, color, tenderness,
WHC, marbling and so on. It fuses the merits of traditional imaging
and spectroscopy techniques, and can simultaneously achieve non-
destructive detection and visualization of different quality attri-
butes. However, there are still some barriers to overcome. First of
all, the issue of high dimensionality of hyperspectral data is a chal-
lenging task, which could limit their implementations for on-line
systems. Therefore, developing cost-effective and efficient algo-
rithms are needed in order to solve the difficulties of hyperspectral
data processing and to satisfy the requirements of industrial appli-
cations. Secondly, some quality attributes of red meats, such as
tenderness, hardness and springiness, are related to linear factors
such as the content of myofibrillar proteins and non-linear factors
such as muscle structure (connective tissue). In this case, not only
linear methods but also non-linear methods can be used for mod-
eling. However, as can be seen from Table 2, most of the studies
have used linear methods such as PLSR and MLR to establish pre-
diction models. Although these linear methods are promising,
additional studies are necessary to apply non-linear methods for
modeling. Thirdly, as a hyperspectral imaging system has a mass
of data and high cost, a multispectral imaging system with a lim-
ited number of wavebands can meet the requirements of real-time
acquisition and processing. Therefore, seeking the most sensitive
wavebands to predict the essential quality attributes of red meats
and building up a multispectral imaging system will be practical in
industrial application. Fourthly, the costs of hardware of hyper-
spectral imaging systems will have to keep going down with the
development of technology and improvement in sensors, illumina-
tion units, as well as computers. On the other hand, software, such
as MATLAB and ENVI, plays an important role in hyperspectral data
processing, but their selling prices are high. Therefore, it is



Z. Xiong et al. / Journal of Food Engineering 132 (2014) 1–13 11
necessary to seek approaches that can reduce the prices of soft-
ware. For example, software companies should attempt to develop
cheaper software, which contain similar functions like MATLAB or
ENVI. Finally, current studies using hyperspectral imaging systems
are mostly focused on extracting and using the spectral informa-
tion without combining spatial information (Barbin et al., 2012b;
Qiao et al., 2005). Some authors have already realized the impor-
tance of spatial information, and have attempted to extract useful
spatial information from hyperspectral images with some analysis
techniques such as the gray level co-occurrence matrix (Kamruzz-
aman et al., 2013; Naganathan et al., 2008). Therefore, the develop-
ment of techniques that are able to extract spatial information has
great potential in predicting quality attributes of red meats.

5. Conclusions

This review paper has mainly introduced recent developments
of hyperspectral imaging systems in the aspects of hardware and
software as well as recent advances in detecting quality attributes
of red meats using hyperspectral imaging. With the rapid develop-
ment of science and technology, the cost of hardware can signifi-
cantly be reduced and the speed for update becomes fast. On the
other hand, software for data processing has also made progress,
which obviously focuses on more novel algorithms developed for
feature wavelength selection, spectral preprocessing, and model
establishment. Besides introducing the development of hyperspec-
tral imaging systems, applications of hyperspectral imaging in
detecting quality attributes of red meats have also been presented
in the paper, mainly including prediction of the content of chemi-
cal compositions, color, pH, marbling level, tenderness, WHC and
so on. These studies have fully demonstrated that hyperspectral
imaging as a rapid and non-invasive technique would be promising
for other quality attributes detection in future. However, there are
still some barriers to be solved, such as dimensionality reduction
problems, and new algorithms exploitation for establishing predic-
tion models in a commercial and real-life environment. The future
trend of the hyperspectral imaging technique is to exploit ad-
vanced devices, develop powerful and easy-to-use software and
apply non-linear methods or combine with multiple multivariate
methods for modeling.
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